

The Sun Earth-Moon System

Section 1 Earth

Properti	es of Earth people used to think that Earth was flat and at the of the universe.						
1) Eart	h is now known to be a round, three-dimensional						
;	a)imaginary vertical line around which Earth spins						
1	b) the spinning of Earth around its axis that causes day and night						
2) Eart	h has a field with north and south poles.						
3) Mag	gnetic is an imaginary line joining Earth's magnetic poles						
;	a) Earth's magnetic axis does not with its rotational axis.						
1	of magnetic poles slowly changes over time.						
Causes	of-seasons						
1)	is the Earth's yearly orbit around the Sun						
	a) Earth's orbit is an , or elongated, closed curve.						
1	Because the Sun is not centered in the ellipse, the changes during the year.						
2) Eart	h's causes seasons,						
;	The hemisphere tilted toward the Sun receives more hours than the hemisphere tilted away from the Sun.						
1	period of sunlight is one reason summer is warmer than winter.						
3) Eart	h's tilt causes the Sun's radiation to strike the hemispheres at different						
;	The hemisphere tilted toward the Sun receives more total than the hemisphere tilted away from the Sun.						
1	in the hemisphere tilted toward the Sun, the Sun appears strikes Earth more directly.						
	is the day when the Sun reaches its greatest distance north or south of the						
1)	solstice occurs June 21 or 22 in the northern hemisphere.						
2)	solstice occurs December 21 or 22 in the northern hemisphere.						

D) _			the day when t	he Sun is directly	over Earth's e	equator		
	1)	Daylig	ht and nighttime	hours are	all over the w	orld.		
		a)	VERNAL () equinox occu	urs on March 2	0 or 21 in the n	orthern hemis	phere.
		b)	AUTUMNAL () equinox occu	urs on Septemb	per 22 or 23 in	the northern h	emisphere.
Secti	on 2	Th	e Moon-Earth's	Satellite				
A)	Mot	ions o	of the Moon					
	1)	The M	loon c	on its axis.				
	2)	The M	loon's rotation tal	kes days wit	th the same side	e always facing	Earth.	
	3)	The M	oon seems to sh	ine because it ref	lects	<u>. </u>		
В)	Мо	on	the differe	ent forms. the Mo	on takes in its	appearance fro	om Earth	
	1)	,	when the Moon is	s between Earth a	and the Sun an	ıd cannot be se	en.	
	2)	each i	_ _ phases is who night after the ne	en more of the ill w moon.	uminated half	of the Moon th	at can be seer	า
		a)	First visible thin	slice of the moon	is a			
		b)	p	hase is when ha	If the lighted si	de of the Moor	າ is visible.	
		c)		is when more tl	nan one quarter	is visible.		
		d)	All of the Moon's	lighted side is vis	sible during a	moon.		
	3)		phases is wh	en less of the illu	minated half o	f the Moon is v	visible after the	full moon.
		a)	visible	starts after a	ı full moon whe	en more than ha	alf of the lighte	d side is stil
		b)	Only half the Mo	on's lighted side	is visible during	the	r	ohase.
		c)	The last visible sl	ice before a new	moon is called	the		
	,		oon completes its se it is keeping u	s cycle of phases p with Earth's	in about 29.5 o	•	27.3 days	

C)	is when Earth or the Moon casts a shadow on the other.					
	1) is when the Moon moves directly between Earth and the Sun, shadowing part of Earth.					
	a) Under theor darkest part of the shadow, a total solar eclipse occurs.					
	b) A partial solar eclipse happens in the lighter shadow on Earth's surface called the					
	c) A total solar eclipse is visible only on a small area of					
	2) is when Earth's shadow falls on the Moon					
	a) If the Moon is completely in Earth's umbra, alunar eclipse occurs.					
	 b)lunar eclipse-when only part of the Moon moves into Earth's umbra, or the moon is totally in the penumbra. 					
	c) A total lunar eclipse is visible on the side of Earth when the night is clear.					
)	The Moon's surface has many depressions, or comets. formed from meteorites, asteroids, and					
	Cracks in the Moon's crust caused lava to fill large craters, forming or dark, flat areas					
	2) Igneous maria rocks are 3 to 4 years old, indicating craters formed after the surface cooled.					
≣)	Data from suggest that under the Moon's crust might lie a solid mantle, then a partly molten mantle and a solid core.					
=)	of Moon origin					
	 HYPOTHESE is when the Moon formed billions of years ago from Earl material thrown off when a large mars size object called (Theia or Orpheus) collided with Earth. 					
	2) THEORY in which the Moon was roped in by Earth's gravitational pull					
	3) THEORY which suggests that the Moon formed in tandem with the Earth, each morphing out of the same basic materials.					
	4) THEORY in which Earth was spinning so fast in its infancy that our planet could have ejected enough of its own mantle into space to form the Moon.					

5) Another model theorizes that a nearly identical object to Earth collided with our young planet and when they smashed together, their chemical compositions mixed to a point where they became indistinguishable from each other.